4; IX, 50860-29-2; X, 51108-05-5; *closo*-1,6-C₂B₄H₆, 20693-67-8; 2,3-C, B₄H₈, 21445-77-2; 2,4-C, B₅H₇, 20693-69-0; (C₆H₆), PC-

AIC301973

 H_2]₂NiCl₂, 14647-23-5; CH₃C₂B₄H₇, 34228-46-1; (CH₃)₂C₂B₄H₆, 20741-68-8.

> Contribution from the Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104

2-, 3-, and 4-Picoline N-Oxide Complexes with Cobalt(II), Nickel(II), and Copper(II) Nitrates¹

N. M. KARAYANNIS,* C. M. MIKULSKI, L. L. PYTLEWSKI, and M. M. LABES

Received March 13, 1973

Complexes of 2-, 3-, and 4-picoline N-oxides (picO) with cobalt(II), nickel(II), and copper(II) nitrates were prepared, by utilizing either 2:1 or 8:1 ligand to metal salt ratios during the synthetic procedure. Characterization studies of these com-NO)] (M = Co, Ni), $[Cu(2-picO)_2(ONO_2)_2]$, $[Co(3-picO)_2(O_2NO)_2]$, $[Ni(L)_2(O_2NO)_2]$ (L = 3- or 4-picO), $[Cu(L)(O_2NO)_2]$ (L = 3 - or 4 - picO); for $Co(NO_3)_2 \cdot (4 - \text{picO})$ a binuclear structure of the type $[(ONO_3)_2 Co(4 - \text{picO})_2 Co(O_2 NO)_2]$ is considered as possible; (b) complexes prepared by using 8:1 L to M ratios, $[M(2-picO)_4(ONO_3)](NO_3) (M = Co, Ni), [Cu(2-picO)_4]$ $(NO_3)_2$, $[Co(L)_6](NO_3)_2$ (L = 3- or 4-picO), $[Ni(4-picO)_6](NO_3)_2$, $[Ni(3-picO)_5(ONO_2)](NO_3)$, $[Cu(4-picO)_4(ONO_2)]-(NO_3)_2$ (NO_3) ; finally, for Cu $(NO_3)_2$.4(3-picO) the overall evidence is compatible with either a monomeric ($[Cu(3-picO)_a](NO_3)_2$) or a binuclear ($[(3-picO)_3Cu(3-picO)_2Cu(3-picO)_3](NO_3)_4$) structure.

Introduction

A variety of 3d metal nitrate complexes with pyridine Noxide (pyO) and its substituted derivatives were reported in recent years.²⁻¹¹ pyO forms complexes of the following types with divalent 3d metal nitrates: $M(pyO)_2(NO_3)_2$ $(M = Mn - Zn), Cu(pyO)_4(NO_3)_2, M(pyO)_6(NO_3)_2 (M = Mn,$ Co, Ni, Zn).⁴ The 2:1 complexes are neutral, involving coordination of both NO₃ groups, while the 4:1 Cu(II) complex and the 6:1 M(II) complexes are cationic and involve exclusively ionic nitrate.²⁻⁴ The presence of substituents on the pyridine ring may introduce steric effects and influence the nature of substituted pyridine N-oxide-metal nitrate complexes as well as the highest possible ligand-tometal ratio attained. An extreme case was recently observed with 2,6-lutidine N-oxide (2,6-lutO), which yields only 2:1 complexes with $M(NO_3)_2$ (M = Mn, Co, Ni, Cu, Zn), regardless of the amounts of ligand utilized during the synthetic procedure.⁸ $Cu(2,6-lutO)_2(NO_3)_2$ involves monodentate nitrato ligands, while the $M(2,6-lutO)_2(NO_3)_2$ (M = Mn, Co, Ni, Zn) complexes are pentacoordinated, containing one mono- and one bidentate coordinated nitrate.⁸ Several divalent 3d metal nitrate-aromatic amine N-oxide complexes with unusual stoichiometries have also been reported in the

(1) Presented in part at the 163rd National Meeting of the American Chemical Society, Boston, Mass., April 9-14, 1972; see Abstracts, No. INOR 82.

(2) J. V. Quagliano, J. Fujita, G. Franz, D. J. Phillips, J. A. Walmsley, and S. Y. Tyree, J. Amer. Chem. Soc., 83, 3770 (1961).

(3) K. Issleib and A. Kreibich, Z. Anorg. Allg. Chem., 313, 338 (1961).

(4) R. L. Carlin and M. J. Baker, J. Chem. Soc., 5008 (1964). (5) J. H. Nelson and R. O. Ragsdale, Inorg. Chim. Acta, 2, 439 (1968)

(6) N. M. Karayannis, S. D. Sonsino, C. M. Mikulski, M. J. Strocko, L. L. Pytlewski, and M. M. Labes, Inorg. Chim. Acta, 4,

141 (1970). (7) H. N. Ramaswamy and H. B. Jonassen, Inorg. Chem., 4, 1595

(1965).

(8) N. M. Karayannis, C. M. Mikulski, L. L. Pytlewski, and M. M.

Labes, J. Inorg. Nucl. Chem., 34, 3139 (1972). (9) W. E. Hatfield, J. A. Barnes, D. Y. Jeter, R. Whyman, and E. R. Jones, Jr., J. Amer. Chem. Soc., 92, 4982 (1970).

(10) S. Scavnicar and B. Matkovic, Acta Crystallogr., Sect. B, 25, 2046 (1969).

(11) M. S. Novakovskii, V. N. Voinova, N. S. Piynenko, and N. F. Kozarinova, Zh. Neorg. Khim., 11, 1738 (1966).

literature, *i.e.*, $Co(NO_3)_2 \cdot 3L$ (L = 4-ethoxypyridine *N*-oxide),⁶ Ni(NO₃)₂·4L (L = 2-ethylpyridine N-oxide), Ni(NO₃)₂· 4L (L = 2,4-lutidine N-oxide), and Ni(NO₃)₂·3L·0.5H₂O (L = quinoline N-oxide).⁵ It was of interest to us to investigate the nature of divalent 3d metal nitrate complexes with 2-, 3-, and 4-picoline N-oxides (2-, 3-, and 4-picO, respectively). The present paper reports on the synthesis and characterization of cobalt(II), nickel(II), and copper(II) nitrate complexes with these ligands.

Experimental Section

Chemicals. The picoline N-oxides were obtained commercially (Aldrich or Baker products) and utilized without further purification. Reagent grade hydrated metal nitrates, triethyl orthoformate, and organic solvents were used.

Synthetic Procedure. During a series of experiments ligand and metal salt were mixed in 2:1 molar ratio, and during another in 8:1 molar ratio. The following synthetic procedure was employed in both cases. A 0.5-1-g sample of the hydrated metal salt was dissolved in ca.50 ml of a 15:1 (v/v) mixture of triethyl orthoformate (a dehydrating agent¹²)-acetone. The resulting solution was warmed at 50-60° for ca. 30 min, under stirring, and a 5% (w/w) solution of the ligand in triethyl orthoformate was subsequently added (ligand to metal molar ratio 2:1 or 8:1). The reaction mixture was stirred at 50-60° for 15 min, a large excess of ligroin (bp 63-75°) was then added, and the mixture was allowed to cool slowly, under continuous stirring, which is continued at room temperature for another 2-3 hr. During this period gradual precipitation of the M(NO₃)₂-picO complexes occurred. The complexes were then filtered, thoroughly washed with ligroin, and dried in an evacuated desiccator over phosphorus pentoxide. As shown in Table I, which gives analytical data (Schwarzkopf Microanalytical Laboratory, Woodside, N. Y.), complexes of the following stoichiometries were obtained during this work. Interaction of ligand and salt in 2:1 molar ratio yielded 2:1 complexes in most cases with the following exceptions: the Co- $(NO_3)_2$ -4-picO and Cu(NO₃)₂-3- or -4-picO interactions led to the formation of 1:1 complexes. On the other hand, interaction of ligand and salt in 8:1 molar ratio led to the formation of the following products: 6:1 complexes in the cases of 3- or 4-picO-Co(NO₃)₂ and 4-picO-Ni(NO₃)₂; a 5:1 complex between 3-picO and Ni(NO₃)₂; and 4:1 complexes in all other cases.

Spectral, Magnetic, and Conductance Studies. Infrared (Tables II and III, Figures 1 and 2) and electronic (Table IV, Figures 3 and 4) spectra and magnetic susceptibility and conductance measurements

(12) P. W. N. M. van Leeuwen and W. L. Groeneveld, Inorg. Nucl. Chem. Lett., 3, 145 (1967).

			0/	 	%	H	%	Z	ш %	etal	
	Complex	Color	Calcd	Found	Calcd	Found	Calcd	Found	Calcd	Found	
	$Co(NO_3)_2 \cdot 2(2-picO)$ F	inkish mauve	35.92	35.27	3.51	4.09	13.96	13.21	14.66	14.98	1
	$Co(NO_3)_2 \cdot 2(3-picO) = F$	hink-orange	35.92	35.14	3.51	3.52	13.96	13.37	14.66	14.07	
	$Co(NU_3)_2 \cdot (4-picU)$	Jeep rose	24.67	24.46	2.41	3.12	14.38	13.96	20.17	19.69	
	$C_0(NU_3)_2 = 4(2-picU)$	urpie	40.03	47.16	4.55	18.4	13.56	13.13	9.51	9.82	
	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$	Jark Drick red	10.10	06-00 51 00	20.0	4./0	13.38	12.21	7.03	7.45	
			10.10	00.10	cu.c	0.4.0 1.1	10.58	13.23	(U.)	/ 0./	
	$\frac{1}{1000} = \frac{1}{1000} = 1$	nartreuse	46.00	20.05	5.52	4.11	13.97	13.40	14.64	15.14	
		Jgnt green	52.94	35.24	3.52	4.00	13.97	13.37	14.64	15.24	
	$Ni(NU_3)_2 \cdot 2(4-picU)$ (hartreuse	35.94	35.07	3.52	3.79	13.97	13.25	14.64	15.08	
	$Ni(NU_3)_2 - 4(2-picO)$	r ellow-green	46.55	46.46	4.55	4.74	13.57	13.11	9.49	9.56	
	$Ni(NO_3)_2 \cdot 5(3-picO)$	í ellow-green	49.47	48.83	4.84	5.22	13.46	12.97	8.06	8.20	
	Ni(NO ₃), -6(4-picO) I	ight green	51.63	50.99	5.05	5.11	13.40	13.04	7.01	7.47	
	Cu(NO,), ·2(2-picO) 1	ight blue	35.50	35.14	3.47	3.62	13.79	13.30	15.65	15.68	
	Cu(NO_)_(3-nicO)	reen	24 34	25.06	7 38	2 53	14.22	13 78	21.45	20.87	
	(Osia-D). (ONu)	Toon	24.24	20.02	00.0	01.4 10 C		0/01		10.02	
			+C-+7	C7-47	00.7	10.2	14.22	14.00	C + · 1 7	20.12	
	$Cu(NU_3)_2 4(2-pic0)$ I	ught green	46.19 46.10	46.03 15 61	4.52	4.51 1 66	13.46	12.80	10.18	10.33	
	Cu(NO ₃) ₂ .4(4-picO) 1	ight green	46.19	45.95	4.52	5.08	13.46	12.82	10.18	9.89	
ted wit	n Vibrational Modes of the N(J ₃ Group ⁴ and wi	th v _{M-0} (ni	trato) (cm ⁻¹	»('						
	$v_1 + v_4$	7			ν_2		e a			$ u_4 $	PM-O(nitrato)
	1773 w, 1760 sh,	988 m, b,	sh	8191	E	1449) s, sh, 1428	8	741 m,	725 m	341 m, 290 m
	1748 w, 1737 w					s, 5	sh, 1312 s,	1304 s			
<u> </u>	1747 m, 1731 w,	1004 w, 9	96 m	8131	F	1429) s, sh, 1352	2 vs,	737 v, s	th, 723 m,	341 m, sh,
	I /23 w, sh					12	97 VS		704 ח	-	308 m, sh
_	1777 w, 1761 w,	1002 m, s	ų	8181	n, sh,	144 	sh, 143	7 s, 2001	751 w,	722 m	309 w, 298 w
	1.740 W, 1/21 W	0001	10	010	Ш	, sn	101/8/12	(399 S, SII			
_	1/39 W, SN, 1/42 W−M, 1733 wr ch	1009 m, 5	194 m	8161	F	142	/ S, Sh, 155(07 w	U vs,	. 149 W,	/ 28 m,	339 W, Sh, 307 W,
_	1753 w h 1717 w	1009 s		817 6	807 s	1451	// vs c 1787 vc		10/ m 222 m		358 ° 371 m
~~~	1749 w-m	1000 w-n	_	811.	6 - 50 S	1346	No 71 (0 1	_	726 m		III 117 60000
	1778 w, 1740 w, b	1026 m, s	ų	8191	n, sh.	1438	8 vs, 1296 v	S/	724 w.	712 w	331 w, 309 w
				806	5 m, sh						
_	1746 w	1019 m		811 1	п	1347	VS		727 w,	sh	
_	1771 w, 1740 w, b	1021 m		812 s		1438	3 vs, 1306 v	7S	722 w,	717 w, sh	311 m, 298 m
_	1748 w, 1744 w, 1726 w, sh	1020 m→s	, 999 m, sh	821 1	n, sh,	144	/ s, sh, 1349	9 vs,	730 m,	sh, 720 m,	316 w, 297 w
				818	9°	13	06 m		sh -		
	1/5/ w, 1/23 m	1019 m-s		808	E	1444	ł vs, sh, 129 7	94 vs	717 w,	٩.	331 w, 375 w, b
_	1763 h 1713	1012 m b		1000	= 1	1001	/ VS 		745	r sn	724 006
	1/02 WTII, U, 1/12 W	ח ( דר בד בד ב	_	1 600	=	144	1 2, 311, 1 2 00	о Ш, U	728 n	мI, Л	270 W, 210 W
•	1743 w	1008 w, s	-4	820 1	w, sh	1347	/ vs		726 w-	. 6	
_	1778 w, 1740 w, 1708 w, sh	1021 m, s	Ч	811 1	п	1428	s, sh, 1299	9 s, b	722 m		309 w, 290 w, b
~	<i>Ca</i> . 1750 w	1020 w, s	ч	814 1	N	1348	8 m-s		723 m		
	1753 vw, 1735 w, 1719 w	1018 m, s	Ч	829 1	w, 812 m	144(	) vs, sh,		729 m,	sh,	350 m, sh, 318 w,
-	1781 w 1741 w m	1014 6		.009	m 210 m	1159	88 VS		u 171	n, sh 703 m	300 % % 300 %
-	1/01 w, 1/71 w 111,			1 (70	II, 017 W	5 <u>1</u>	· vs, U,-		1.24 III,		JUO 5, 311, 277 a

 $a_{p_1-p_4}$  assignments refer to the fundamental vibrational modes of ionic  $(D_{3h})$  NO₃⁻⁷. ^b Abbreviations: s, strong; m, medium; w, weak; v, very; b, broad; sh, shoulder. ^c Overlaps with Nujol absorption.

Table III. $v_{M} = 0.0000000000000000000000000000000000$	( ⁻¹ )	(cm	) Modes (	cm ⁻¹ )	(500 - 250)	and viscand	$v_{M-O}(picO)$	ole III.
-----------------------------------------------------------	-------------------	-----	-----------	--------------------	-------------	-------------	-----------------	----------

Compd	^{<i>v</i>} N-0	$\nu_{M-O}(picO)$	$\nu_{\rm ligand} (500-250 {\rm ~cm^{-1}})$
2-picO	1242 vs		469 m, 449 m, 336 m
$Co(NO_3), \cdot 2(2 - picO)$	1202 vs	391 m, 377 m-s	462 m, 450 w, sh, 335 w, sh
$Co(NO_3), 4(2-picO)$	1219 vs, 1208 vs	379 s	473 m, 460 m, 336 m
$Ni(NO_3)_2 \cdot 2(2 - picO)$	1208 vs	377 m	471 m, sh, 461 m, 341 m
$Ni(NO_3)_2 \cdot 4(2-picO)$	1210 vs	380 s	478 m, 461 m, 332 m
$Cu(NO_3), 2(2-picO)$	1200 vs	419 vs	470 m, 450 w, sh, 335 w, sh
$Cu(NO_3)_2 \cdot 4(2\text{-picO})$	1209 vs	414 s	467 m, 341 w
3-picO	1280 vs		493 m, 450 m, 418 w, sh, 306 w
$Co(NO_3)_2 \cdot 2(3-picO)$	1260 s	375 m	489 m, 445 m, 422 w, sh
$Co(NO_3)_2 \cdot 6(3-picO)$	1255 vs	339 s	492 s, 446 m, 420 w, sh, 310 w, b
$Ni(NO_2)$ , $2(3-picO)$	1262 s, sh	381 m, 349 m	498 m, sh, 449 m
$Ni(NO_3)_2 \cdot 5(3 - picO)$	1262 s, sh, 1251 vs	349 s	491 s, 447 m, 422 w, sh, 310 w, sh
$Cu(NO_{3}), (3-picO)$	1259 s, 1250 s, sh	410 m	496 m, 480 w, sh, 425 w, sh
$Cu(NO_3)_2 \cdot 4(3-picO)$	1249 s	409 s	493 w, sh, 481 m, 460 w, sh, 310 w
4-picO	1228 vs		481 m, 468 m, 337 m, 320 w, sh
$Co(NO_{1})$ , $(4-picO)$	1198 m, b	386 m, sh	486 m, 450 m, sh, 437 m-s
$Co(NO_3) \cdot 6(4-picO)$	1214 s	372 s	484 s, 420 w, sh, 332 w
$Ni(NO_3)_2 \cdot 2(4-picO)$	1207 s	388 m	481 s, 419 m, 334 w
$Ni(NO_3)$ , $6(4-picO)$	1217 s	378 m	480 s, 413 m, 330 w, b
$Cu(NO_{3})$ , (4-picO)	1209 s	424 m, 408 m, sh	480 m, b, 333 m, sh
$Cu(NO_3)_2.4(4-picO)$	1210 vs	397 s, 353 m	482 s, 439 s, 331 m, 312 sh

^a Spectra of ligands and complexes obtained on Nujol mulls. Abbreviations: s, strong; m, medium; w, weak; v, very; b, broad; sh, shoulder.





Figure 1. Representative ir spectra  $(1800-700 \text{ cm}^{-1})$ : —, Co(NO₃)₂·6(4-picO), a complex involving exclusively ionic NO₃; ---, Ni(NO₃)₂·2(3-picO), a complex involving exclusively coordinated NO₂; ----, Cu(NO₃)₂·4(4-picO), a complex involving both ionic and coordinated NO₃. The asterisks indicate Nujol absorptions.

(Table V) were obtained by methods described elsewhere.¹³

## Discussion

Infrared and Conductance Evidence. The presence of ionic or coordinated nitrate can be generally established by examination of ir spectra.¹⁴⁻¹⁷ The exclusive presence

(13) N. M. Karayannis, L. L. Pytlewski, and M. M. Labes, Inorg. Chim. Acta, 3, 415 (1969); N. M. Karayannis, C. M. Mikulski, J. V. Minkiewicz, L. L. Pytlewski, and M. M. Labes, J. Less-Common Metals, 20, 29 (1970).

(14) C. C. Addison, N. Logan, C. S. Wallwork, and C. D. Garner, *Quart. Rev., Chem. Soc.*, 25, 289 (1971); S. P. Sinha, Z. Naturforsch., A, 20, 1661 (1965); G. Topping, Spectrochim. Acta, 21, 1743 (1965).

(15) H. Brintzinger and R. E. Hester, *Inorg. Chem.*, 5, 980 (1966); R. E. Hester and W. E. L. Grossman, *ibid.*, 5, 1308 (1966); B. Taravel, F. Fromage, P. Delorme, and V. Lorenzelli, *J. Chim.* Phys. Phys. Review Phys. Rev. C 1071)

Phys. Physicochim. Biol., 68, 715 (1971).
(16) N. F. Curtis and Y. M. Curtis, *Inorg. Chem.*, 4, 804 (1965).
(17) A. B. P. Lever, E. Mantovani, and B. S. Ramaswamy, *Can.*J. Chem., 49, 1957 (1971).

Figure 2. Low-frequency ir spectra  $(500-250 \text{ cm}^{-1})$  of the complexes of Figure 1.

of ionic nitrate in all the 6:1 complexes and the 4:1 complexes of 2- and 3-picO with Cu(NO₃)₂ is clearly indicated from their ir spectra (Table II, Figure 1). In fact, the spectra of these compounds are characterized by four bands attributable to the fundamental vibrational modes of ionic  $(D_{3h})$  nitrate^{14,15} and a single  $v_1 + v_4$  combination band in the 1800-1700-cm⁻¹ region.^{16,17} Furthermore, no bands associated with  $v_{M-O}$  (nitrato) modes¹⁸ were observed in the ir spectra (Table II, Figure 2). Complexes with both ionic and coordinated nitrate are the 4:1 2-picO-M(NO₃)₂ (M = Co, Ni) and 4-picO-Cu(NO₃)₂ and the 5:1 3-picO-Ni(NO₃)₂ complexes. In these cases ir bands corresponding to the fundamental vibrational modes of both ionic and coordinated nitrate (*e.g.*, in Ni(NO₃)₂:5(3-picO) the  $v_3$ absorption at 1349 cm⁻¹ is due to ionic NO₃; and the bands

⁽¹⁸⁾ J. R. Ferraro and A. Walker, J. Chem. Phys., 42, 1273, 1278 (1965); R. H. Nuttall and D. W. Taylor, Chem. Commun., 1417 (1968); J. I. Bullock and F. W. Parrett, *ibid.*, 157 (1969).

Table IV.	Electronic	Spectra	of Picoline	N-Oxide-Metal	Nitrate	Complexes ^a

Complex	Medium	$\lambda_{\max}, \operatorname{nm}(\epsilon_{\max})$
$Co(NO_3)_2 \cdot 2(2 - picO)$	Nujol	498 s, 527 s, sh, 650 m, sh, 752 m, 815 m, sh, 1008 w, sh
	$5 \times 10^{-3} M$ in CH ₃ NO ₂	498 sh (122), 513 sh (138), 524 (141), 739 (17), 820 sh (15), 1035 (16)
$Co(NO_3), 4(2-picO)$	Nujol	544 s, 576 s, sh, 713 m, 808 m, b, sh, 1030 w
	$4.8 \times 10^{-3} M$ in CH ₃ NO ₂	526 (206), 755 sh (24), 803 sh (21), 1050 b (22)
$Co(NO_3)_2 \cdot 2(3-picO)$	Nujol	502 s, 552 s, b, 862 m, sh, 1200 m, sh
	$1.4 \times 10^{-2} M$ in CH ₃ NO ₂	505 sh (88), 521 (94), 800 m, b (9), 1218 b (14)
$Co(NO_3)_2 \cdot 6(3 - picO)$	Nujol	483 s, sh, 539 s, sh, 551 s, sh, 702 m, sh, 800 m-w, b, sh, 1150 w, b
	$1.3 \times 10^{-2} M$ in CH ₃ NO ₃	502 sh (85), 528 (88), 680 sh (9), 1178 b (12)
$Co(NO_3)_2 \cdot (4-picO)$	Nujol	529 s, b, 584 s, sh, 679 w, sh, 1150 m, b
	$6.8 \times 10^{-3} M$ in CH ₃ NO ₂	506 (131), 648 sh (19), 1146 b (17)
$Co(NO_3)_2 \cdot 6(4-picO)$	Nujol	492 s, 530 s, b, 702 w, sh, 1160 w, b
	$4.8 \times 10^{-3} M$ in CH ₃ NO ₂	503 sh (183), 530 (200), 1190 b (10)
$Ni(NO_3)_2 \cdot 2(2 - picO)$	Nujol	399 s, 460 s, sh, 516 m, sh, 665 m, b, 723 m, sh, 890 w, 1130 w, b
	$1.5 \times 10^{-2} M$ in CH ₃ NO ₂	390 sh (25), 480 sh (30), 667 (26), 749 sh (20), 1137 b (10)
$Ni(NO_3)_2 \cdot 4(2-picO)$	Nujol	389 s, 440 s, sh, 652 m, 690 m, 720 m, sh, 785 m, sh, 1190 w, sh
	$1.3 \times 10^{-2} M \text{ in CH}_{3} \text{NO}_{2}$	385 sh (88), 479 sh (39), 699 (22), 766 sh (18), 1190 b (9)
$Ni(NO_3)_2 \cdot 2(3-picO)$	Nujol	381 s, 603 m, b, 1150 w, b
	$10^{-2} M$ in CH ₃ NO ₂	389 sh (69), 473 sh (6), 673 (17), 761 sh (13), 1168 b (8)
$Ni(NO_3), \cdot 5(3-picO)$	Nujo1	400 s, sh, 480 s, sh, 560 s, sh, 615 m, b, 645 m, sh, 1250 w, sh
5,2	$9.6 \times 10^{-3} M$ in CH ₃ NO ₂	395 sh (204), 499 sh (32), 697 (19), 760 sh (15), 1240 b (9)
$Ni(NO_{2}), \cdot 2(4-picO)$	Nujol	396 s, 660 m, b, 1170 w, b
	$10^{-2} M$ in CH ₃ NO ₂ -(CH ₃ ),CO	396 (37), 500 sh (5), 672 (8), 720 b, sh (7), 1158 b (5)
$Ni(NO_3), \cdot 6(4 - picO)$	Nujol	383 s, 695 m, 760 m, sh, 1250 m, b
	$2.4 \times 10^{-3} M$ in CH ₃ NO ₂	383 (50), 468 b, sh (14), 660 b (12), 740 sh (10), 1220 b (8)
$Cu(NO_1), 2(2-picO)$	Nujol	<300 vs, 615 s, b
	$4.9 \times 10^{-3} M$ in CH, NO,	694 (90)
$Cu(NO_3), 4(2-picO)$	Nuiol	<300 vs. 674 s. b
372 1 7	$3.2 \times 10^{-3} M$ in CH, NO,	708 sh (122), 733 (125), 1165 sh (48)
$Cu(NO_{3})$ , (3-picO)	Nuiol	<300  vs. 640  s.  b. 671  s
- 3/2 - 1	$1.7 \times 10^{-2} M$ in CH ₂ NO ₂ -CH ₂ OH	698 sh (85), 707 (87)
$Cu(NO_{2}) \cdot 4(3-picO)$	Nuiol	360 vs. 702 s. b. 827 m
372 1	$3.2 \times 10^{-3} M$ in CH ₂ NO ₂	722 b (115), 903 sh (25)
$Cu(NO_2)_2 \cdot (4-picO)$	Nujol	<300 vs, 737 s, b, 1015 m, sh
(	$4.8 \times 10^{-3} M$ in CH ₂ NO ₂	670 (137), 696 sh (135)
$Cu(NO_{2}) \cdot 4(4-picO)$	Nuiol	326 vs. 400 vs. sh. 499 s. 528 s. sh. 650 s. b. 755 s. 820 s. sh
	$3.2 \times 10^{-3} M$ in CH ₂ NO ₂	720 (81), 960 sh (31)

^a Abbreviations: s, strong; m, medium; w, weak; v, very; b, broad; sh, shoulder.





Figure 3. Electronic spectra: --, Cu(NO₃)₂·(4-picO); ---, Cu(NO₃)₂·4(4-picO); ---, Cu(NO₃)₂·4(3-picO); A, mull spectra; B, CH₃NO₂ solution spectra.

at 1447 and 1306 cm⁻¹ are due to the split  $v_3$  mode in the lower symmetry coordinated nitrato group;^{14,15} cf. Table II) are observed. In addition the 1800–1700-cm⁻¹ region is characterized by three or four absorptions^{16,17} while  $v_{M-O}$ (nitrato) modes¹⁸ (tentatively assigned) appear below 345 cm⁻¹.

Distinction between mono- and bidentate nitrato ligands,

Figure 4. Solid-state (Nujol mull) electronic spectra: --, Co-(NO₃)₂·4(2-picO); -·-, Co(NO₃)₂·(4-picO); ---, Ni(NO₃)₃·6(4-picO);  $\cdots$ , Ni(NO₃)₂·2(2-picO).

on the basis of ir evidence, is usually difficult, as, in most cases, the coordinated  $-ONO_2$  and  $-O_2NO$  groups have the same local site symmetry  $(C_{2\nu})^{.14,15}$  In the 1800-1700-cm⁻¹ region, two bands are observed in both mono- and bidentate nitrato metal complexes; the separation of these two absorp-

Table V. Magnetic Moments (293°K) and Molar Conductivities  $(10^{-3} M \text{ Nitromethane Solutions at } 25^\circ)$  of Metal Nitrate-picO Complexes

Complex	10 ⁶ x _M ^{cor} , cgsu	μ _{eff} , BM	$\Lambda_{\mathbf{M}}, \Omega^{-1}$ cm ² mol ⁻¹
$Co(NO_3), \cdot 2(2-picO)$	8,804	4.56	29
$Co(NO_1), 4(2-picO)$	8,930	4.59	49
$Ni(NO_3)_2 \cdot 2(2-picO)$	4,912	3.41	30
$Ni(NO_3)_2 \cdot 4(2 \cdot picO)$	5,102	3.47	52
$Cu(NO_3)_2 \cdot 2(2-picO)$	1,587	1.94	42
$Cu(NO_3)_2 \cdot 4(2 - picO)$	1,492	1.88	32
$Co(NO_3)_2 \cdot 2(3-picO)$	9,303	4.69	31
$Co(NO_3)_2 \cdot 6(3-picO)$	9,275	4.68	64
$Ni(NO_3)_2 \cdot 2(3-picO)$	4,661	3.31	41
$Ni(NO_3)_2 \cdot 5(3 - picO)$	4,444	3.24	56
$Cu(NO_3)_2 \cdot (3-picO)$	1,702	2.00	57
$Cu(NO_3)_2 \cdot 4(3-picO)$	1,617	1.95	70
$Co(NO_3)_2 \cdot (4-picO)$	9,022	4.62	36
$Co(NO_3)_2 \cdot 6(4-picO)$	10,079	4.88	47
$Ni(NO_3)_2 \cdot 2(4-picO)$	4,511	3.26	40
$Ni(NO_3)_2 \cdot 6(4-picO)$	4,379	3.22	59
$Cu(NO_3)_2 \cdot (4-picO)$	1,666	1.98	58
$Cu(NO_3)_2 \cdot 4(4-picO)$	1,631	1.96	52

tions is generally smaller for the mono- rather than the bidentate nitrato ligand complexes.^{16,17} The above-mentioned complexes, which involve both ionic and coordinated nitrate, exhibit combination bands (1800-1700 cm⁻¹) corresponding to both these types of  $NO_3$ ; it is, thus, rather difficult to draw any conclusions regarding the nature of the coordinated nitrato group, and structural assignments were based on their electronic spectra (vide infra). The 2:1 2-picO complexes of Co(II) and Ni(II) clearly involve two types of coordinated nitrate (*i.e.*, mono- and bidentate), as is also the case with the corresponding 2,6-lutO complexes.⁸ In fact, four bands are observed at 1800-1700 cm⁻¹ (Table II) in the spectra of these compounds,  16,17  while in the fundamental vibrational mode regions several absorptions attributable to coordinated  $NO_3$  are split (e.g., the two components of the split  $\nu_3$  mode are also split as shown in Table II).¹⁴⁻¹⁷ The rest of the complexes reported contain exclusively one type of coordinated nitrate, these are the three 1:1 and the following 2:1 complexes:  $2-picO-Cu(NO_3)_2$ , 3-picO-M(NO₃)₂ (M = Co, Ni), and 4-picO-Ni(NO₃)₂. The spectra of these compounds exhibit bands typical of  $C_{2v}$  co-ordinated nitrate,¹⁴⁻¹⁷ the separations of the bands at 1800- $1700 \text{ cm}^{-1}$  (between 31 and 70 cm⁻¹) in the spectra of these complexes are in favor of the presence of bi- rather than monodentate nitrate.^{16,17} The low-frequency ir spectra of all the new complexes involving coordinated nitrate exhibit bands attributable to  $v_{M-O}$  (nitrato) modes;¹⁸ tentative assignments are given in Table II (see also Figure 2).

Table III (see also Figures 1 and 2) shows the  $v_{N-Q}$ ,  $v_{M-Q}$ . (picO) (tentatively assigned), and low-frequency ligand bands. The  $\nu_{N-O}(N$ -oxide) mode of the free ligands^{19,20} is shifted toward lower frequencies upon metal complex formation, as is generally the case for complexes of  $R_n NO$  ligands, involving coordination of the oxygen to the metal ion. $^{19-22}$  The positions of the  $\nu_{M-O}(picO)$  modes were, in many cases, used in combination with the electronic spectral evidence for the formulation of the new complexes and are discussed in the next section.

(19) H. Shindo, Chem. Pharm. Bull., 4, 460 (1956); R. Whyman and W. E. Hatfield, Inorg. Chem., 6, 1859 (1967).
(20) N. M. Karayannis, C. M. Mikulski, M. J. Strocko, L. L. Pytlewski, and M. M. Labes, J. Inorg. Nucl. Chem., 33, 3185 (1971).
(21) S. Kida, J. V. Quagliano, J. A. Walmsley, and S. Y. Tyree, Supervising Action 10 (1962). W. Kelwini, S. Kida, and J. W.

Spectrochim. Acta, 19, 189 (1963); Y. Kakiuti, S. Kida, and J. V. Quagliano, ibid., 19, 201 (1963).

(22) G. Schmauss and H. Specker, Z. Anorg. Allg. Chem., 364, 1 (1969).

The molar conductivities (Table V) of the new complexes in nitromethane (Table V) do not provide any useful information concerning the nature of the complexes in the solid state. The  $\Lambda_M$  values suggest that certain new complexes behave as nonelectrolytes ( $\Lambda_{\rm M} = 29-40 \ \Omega^{-1} \ {\rm cm}^2 \ {\rm mol}^{-1}$ ), while other complexes exhibit intermediate behavior between 1:1 and nonelectrolytes ( $\Lambda_{\rm M} = 41-70 \ \Omega^{-1} \ {\rm cm}^2 \ {\rm mol}^{-1}$ ) in  $10^{-3} M$  nitromethane solution.²³ For complexes containing exclusively ionic nitrate,  $\Lambda_M$  values corresponding to 1:2 electrolytes would be expected, prima facie. Nevertheless, several hexakis(aromatic amine N-oxide)metal(II) or -metal(III) nitrate complexes, reported in the past, behave as 1:1 electrolytes in nitromethane.^{5,6,8} This has been attributed to the displacement of N-oxide by nitrato ligands in solution.^{5,6,8} On the other hand, certain complexes, presumably neutral as suggested by their ir spectra, but exhibiting unexpectedly high  $\Lambda_{\rm M}$  values (e.g., Cu(NO₃)₂·(4-picO)), are apparently dissociated in nitromethane.

Electronic Spectra and Magnetic Susceptibilities. The magnetic moments of the new complexes (Table V) are generally normal for high-spin configurations of the metal ions under study.²⁴ The electronic spectra of some Cu(II) complexes are illustrated in Figure 3.  $Cu(NO_3)_2 \cdot 2(2-picO)$ exhibits the d-d transition at 615 nm (Table IV) and is, most probably, tetracoordinated and monomeric, involving monodentate nitrato ligands, *i.e.*,  $[Cu(2-picO)_2(ONO_2)_2]$ . In fact, the 2,6-lutO analog, which is also monomeric, shows the d-d band at 605 nm,⁸ while the corresponding binuclear, pentacoordinated pyO compound¹⁰ exhibits a split d-d band with maxima at 719 and 850 nm.⁴ Steric hindrance introduced by the presence of the 2-methyl substituent does apparently impede the formation of the dimer in the case of Cu(NO₃)₂·2(2-picO). The occurrence of  $\nu_{Cu-O}$ (2-picO) at 419 cm⁻¹ in this complex is in support of the above formulation.²⁰ The 1:1 Cu(NO)₃-3- or -4-picO complexes exhibit splittings of the d-d transition (Table IV). These spectra are probably suggestive of pentacoordinated monomeric configurations,^{4,25,26} involving two bidentate nitrato ligands, *i.e.*,  $[Cu(L)(O_2NO)_2]$  (L = 3- or 4-picO). A hexacoordinated structure for these compounds may be ruled out, since the  $v_{Cu-O}(picO)$  modes occur at too high frequencies (Table III) for hexacoordinated Cu(II) compounds with aromatic amine N-oxides,^{8,27} while coordination number 6 would also result in a considerable shift of the d-d band toward lower energy.²⁸ The occurrence of the d-d transition at higher wavelength in the 3- rather than the 4-picO complex is, presumably, due to the fact that 3-picO is a weaker ligand than 4-picO.²² Cu(NO₃)₂·4(2-picO) is obviously of the type  $[Cu(2-picO)_4](NO_3)_2$ , as suggested by the single character of the d-d band and the location of  $v_{Cu-O}$ -(2-picO). The other 4:1 Cu(II) complexes exhibit split d-d bands (Table IV). For  $Cu(NO_3)_2 \cdot 4(4-picO)$ , which contains both ionic and coordinated nitrate (vide supra), the formulation [Cu(4-picO)₄(ONO₂)](NO₃), involving pentacoordinated Cu(II) and a monodentate nitrato ligand, is considered as most probable. Cu(NO₃)₂·4(3-picO) is, however, char-

(23) N. S. Gill and R. S. Nyholm, J. Chem. Soc., 3997 (1959);
A. K. R. Unni, L. Elias, and H. I. Schiff, J. Phys. Chem., 67, 1216 (1963);
T. D. DuBois and D. W. Meek, Inorg. Chem., 8, 146 (1969).
(24) B. N. Figgis and J. Lewis, Progr. Inorg. Chem., 6, 37 (1964).
(25) A. M. Brodie, S. H. Hunter, G. A. Rodley, and C. J. Wilkins,

Inorg. Chim. Acta, 2, 195 (1968); S. H. Hunter, R. S. Nyholm, and G. A. Rodley, *ibid.*, 3, 631 (1969).

(26) I. M. Procter, B. J. Hathaway, and P. Nicholls, J. Chem. Soc. A, 1678 (1968); A. A. G. Tomlinson and B. J. Hathaway, ibid., 1685 (1968).

(27) R. Whyman, W. E. Hatfield, and J. S. Paschal, Inorg. Chim. Acta, 1, 113 (1967).

acterized by exclusively ionic nitrate; the d-d splitting in this case might be interpreted in terms of either a low-symmetry²⁸ tetracoordinated configuration ( [Cu(3-picO)₄]-(NO₃)₂) or a binuclear, N-oxide-bridged structure of the type [(3-picO)₃Cu(3-picO)₂Cu(3-picO)₃](NO₃)₄, with coordination number 5 for the central Cu²⁺ ions. The normal  $\mu_{eff}$  (1.95 BM) of this complex does not preclude the latter possibility; in fact, although binuclear, N-oxide-bridged copper(II) halide-N-oxide complexes are usually magnetically subnormal,²⁹ analogous Cu(NO₃)₂-N-oxide compounds exhibit normal paramagnetism(the electronic spin-spin interaction in the [Cu(pyO)₂(NO₃)₂]₂ dimer yields a triplet ground state, as reported recently).^{9,10}

The electronic spectra of the Co(II) and Ni(II) complexes (Table IV, Figure 4) are suggestive of penta- or hexacoordinated configurations. The 2-picO complexes of these metal ions exhibit electronic spectra suggestive of coordination number 5. In fact, the absorptions at 700-820 nm are considerably stronger than that at 1008-1030 nm in the solidstate spectra of the Co(II)-2-picO complexes,^{28,30} while the Ni(II) analogs show multiple splittings of the d-d band.^{25,31} The location of the  $v_{M-O}(2\text{-picO})$  bands and  $\mu_{eff}$  values (Tables III, V) for these complexes are also in support of pentacoordinated structures.^{20,25,31} This evidence, in combination with the information concerning the nature of the NO₃ groups, derived from the ir spectra (vide supra) of these compounds, leads to the following formulations: [M(2 $picO_2(ONO_2)(O_2NO)]$  (*i.e.*, identical with the 2,6-lutO analogs⁸) and  $[M(2-picO)_4(ONO_2)](NO_3)$ , involving one monodentate coordinated nitrate (M = Co, Ni). The 1:1, 2:1, and 6:1 3- or 4-picO-Co^{II} or -Ni^{II} complexes exhibit electronic spectra compatible with hexacoordinated struc-tures of low symmetry;²⁸ the magnetic moments of these Ni(II) complexes are within or just slightly above the limits of the "octahedral" region (2.83-3.30 BM)²⁴ for this metal ion. The  $\mu_{eff}$  of the hexacoordinated Co(II) complexes are also within the range of values reported for distorted octahedral complexes of this metal ion with aromatic amine Noxides.²⁸ The 2:1 and 6:1 complexes are, therefore, of the same types as the pyO analogs,⁴ *i.e.*,  $[M(L)_2(O_2NO)_2]$  (for M = Co, L = 3-picO; for M = Ni, L = 3- or 4-picO), with bidentate nitrato ligands, and  $[M(L)_6](NO_3)_2$  (for M = Co,

(28) W. Byers, A. B. P. Lever, and R. V. Parish, Inorg. Chem., 7, 1835 (1968).

(29) W. H. Watson, *ibid.*, 8, 1879 (1969), and references therein.
(30) N. M. Karayannis, J. V. Minkiewicz, L. L. Pytlewski, and
M. M. Labes, *Inorg. Chim. Acta*, 3, 129 (1969).

(31) M. Ciampolini and N. Nardi, *Inorg. Chem.*, 5, 41, 1150 (1966); M. Ciampolini and G. P. Speroni, *ibid.*, 5, 45 (1966).

L = 3- or 4-picO; for M = Ni, L = 4-picO). A possible structure for Co(NO₃)₂ (4-picO) is [(ONO₂)₂Co(4-picO)₂-Co(O₂NO)₂], *i.e.*, binuclear with bidentate NO₃ ligands and bridging N-oxide groups. Finally, the electronic spectrum of Ni(NO₃)₂·5(3-picO) might be interpreted in terms of either a pentacoordinated or a low-symmetry hexacoordinated configuration.^{25,28,31} The  $\mu_{eff}$  (3.24 BM) of this compound and the fact that ir evidence suggests that one nitrate group is coordinated in this complex are definitely in favor of a hexacoordinated structure. Hence, this compound is formulated as [Ni(3-picO)₅(ONO₂)](NO₃).

The types of complexes isolated during the present study demonstrate that interactions of divalent 3d metal nitrates with aromatic amine N-oxides may lead to complexes with various stoichiometries. In fact,  $M(NO_3)_2 \cdot nL$  complexes, where n = 1-6 (inclusive), between metal salts and ligands of the above types, have been reported during the present or previous^{5,6} works. As is the case with  $MX_2 \cdot nL$  (M = 3d metal ion, X = halide ion, L = aromatic amine N-oxide) complexes, for which compounds with n = 0.5 and 1-6 (inclusive) have been isolated,^{2,3,32} the nature of the complex precipitated during the interaction of a given divalent 3d metal nitrate with a given aromatic amine N-oxide is apparently determined by the synthetic procedure followed. Comparisons of the nature of the Co(II) and Ni(II) complexes of the three ligands under study clearly show the steric hindrance introduced by the presence of the 2-methyl substituent in 2-picO. This hindrance is, nevertheless, not as severe as that observed with 2,6-lutO.⁸ In fact, the latter ligand forms only  $M(2,6-lutO)_2(NO_3)_2$  (M = 3d metal ion) complexes, regardless of the ligand to metal ratio utilized during the synthetic procedure,⁸ while 2-picO forms both 2:1 and 4:1 complexes with  $M(NO_3)_2$ . The second methyl substituent in 2,6-lutO has apparently a decisive effect in preventing the formation of complexes in molar ratios higher than 2:1.

**Registry No.**  $Co(NO_3)_2 \cdot 2(2-picO), 49634-38-0; <math>Co(NO_3)_2 \cdot 4(2-picO), 49634-39-1; Ni(NO_3)_2 \cdot 2(2-picO), 49634-40-4; Ni(NO_3)_2 \cdot 4(2-picO), 49634-41-5; Cu(NO_3)_2 \cdot 2(2-picO), 49634-42-6; Cu(NO_3)_2 \cdot 4(2-picO), 49634-43-7; Co(NO_3)_2 \cdot 2(3-picO), 49634-44-8; Co(NO_3)_2 \cdot 6(3-picO), 49634-45-9; Ni(NO_3)_2 \cdot 2(3-picO), 49654-94-6; Ni(NO_3)_2 \cdot 5(3-picO), 49654-95-7; Cu(NO_3)_2 \cdot (3-picO), 49654-96-8; Cu(NO_3)_2 \cdot 4(3-picO), 49654-97-9; Co(NO_3)_2 \cdot (4-picO), 49654-98-0; Co(NO_3)_2 \cdot 6(4-picO), 49655-01-8; Cu(NO_3)_2 \cdot 2(4-picO), 49655-02-9; Cu(NO_3)_2 \cdot 4(4-picO), 49655-02-9; Cu(NO_3)_2 \cdot 4(4-picO), 49655-02-9; Cu(NO_3)_2 \cdot 4(4-picO), 49655-03-0.$ 

(32) D. H. Brown, D. Kenyon, and D. W. A. Sharp, J. Chem.
Soc. A, 1474 (1969); C. R. Kanekar and S. V. Nipankar, Curr. Sci.,
35, 361 (1966); J. A. Bertrand and D. L. Plymale, Inorg. Chem., 3,
775 (1964).